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Abstract—The criterion of dry-out is formulated as a limit of mist flow in upstream approach namely in this

way, that at the place of dry-out the mass flux of droplets is so great that they cover occasionally the whole

section of the wall. Based on such an assumption the theory is established, and the results compared with
experimental data for water flowing in vertical round tubes.

NOMENCLATURE

a, thermal diffusivity ; also disc diameter;
¢, specific heat at constant pressure;
d, tube diameter;

D, droplet diameter;

Ah,  enthalpy of vaporization;

L path of flight;

La, Laplace number, equation (3.13);
my,  mass of a droplet;

Pr, Prandtl number;

q, heat flux;

Q, heat;

Re, Reynolds number;
S, slip ratio;

te time of contact;

ty time of flight;
T,  saturation temperature;
T.. wall temperature;

U, a constant, equation (3.6);
W, velocity ;

We, Weber number;

X, quality.

Greek symbols

2 heat conductivity;
i, dynamic viscosity;
v, kinematic viscosity;
p. density;
7, surface tension;
@, void fraction.
Subscripts
w, wall.
Superscripts
' liquid ;
vapour.

L. INTRODUCTION

In vErTICAL boiling channels with upward flow the
two-phase flow regime at higher qualities is usually
drop—-annular. The heated surface is then covered with
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liquid film, disturbed by impingement and entrain-
ment of droplets flowing in the vapour core. All the heat
has to be transferred through the film, and hence the
wall superheat may be moderate. However, at certain
critical conditions the film breaks off or vanishes so
that the wall assumes direct contact with vapour; this
is connected with violent deterioration of heat transfer
and with conspicuous rise of the wall temperature.
Sometimes at those places of “dry-out” the film may be
re-established after a moment, and the wall tempera-
ture drops. If the phenomenon is repeated one has to
do with temperature oscillations which may be even
more dangerous than the high wall temperature.

There seems to be general agreement that the critical
phenomenon occurs when the film dries out as a result
of evaporation and liquid entrainment from its surface,
these processes being offset by droplet deposition from
the vapour core. This statement allows to write down
the liquid film mass balance in which the liquid mass
fluxes of deposition and entrainment normal to the
film surface must be introduced. In a recent review
Hewitt [1] discusses a number of models proposed for
the solution of the liquid film mass balance equation,
differing in the treatment of deposition and entrain-
ment mass fluxes. Such analyses may be called “the
downstream approach”, as they try to predict the
limits of the drop-annular flow from the features of the
same.

In this report we present another method, namely
that of the upstream approach, consisting in prediction
of the dry-out conditions on the basis of what follows,
i.e. on the basis of the mist flow features. Evidently, in
post-dry-out conditions the liquid appears only as
droplets. They evaporate due to contact with
superheated vapour, but they can also strike against
the wall and evaporate very quickly in the ping-pong
described and analyzed in [2]. As the droplet con-
centration diminishes along the channel in the post-
dry-out section, the mass flux of droplets normal to the
wall is the greatest at the dry-out position. At that
point the situation may be well illustrated by the
sketch taken from the report of Doroshchuk, Lants-
man and Lewitan {3], Fig. 1. The interpretation of
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FI1G. 1. Dry-out model according to Doroshchuk; figure
taken from [1].

that phenomenon according to Doroshchuk et al. [3],
is that intense nucleate boiling at the place of dry-out
gives also intense droplet emission resulting in vanish-
ing of the film. This explanation is typical for the
downstream approach philosophy. In the “upstream
approach” we would interpret the same Fig. 1 as
follows: at the place of dry-out the mass flux of
droplets is so great that they occasionalily cover the
whole field of view when looking in the direction
normal to the surface.

An idealized model of such pattern of impinging and
rejected droplets in mist flow is shown in Fig. 2. In
post-dry-out conditions (Fig. 2a) the droplets strike
against the wall (a process which corresponds to the
deposition flux), flatten out on the surface to cover an
area of a2, a being the droplet diameter after flattening,
and after a moment are rejected in the Leidenfrost
phenomenon (which corresponds to the entrainment
flux). The surface in this primitive modelis divided into
squares of side a, the droplets in contact with wall are
denoted by circles, those flowing to the surface with
smaller circles containing a letter ¢, and those flowing
from the surface into the core are denoted by the same
symbol reversed.

In the upstream approach to the place of dry-out the
number of occupied sites in the square “lattice” in Fig.
2 grows, and finally (Fig. 2c) all the sites are occupied.
The picture resembles then an unstable film, being
broken at several places and differing only in geometry
from a liquid film saturated with bubbles. In reality
such a regular distribution of sites as in Fig. 2 is of
course impossible. The droplets may contact the wall
in the most irregular way, therefore as a sign of dry-out
we can take that all the surface is in contact with
droplets either resting, leaving or coming. Note that if
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such a situation should be preserved the number of
impinging droplets must be equal to that of the
rejected ones. If the former is greater then the de-
stroyed liquid film will be re-established. This idea has
been utilized in application of helical-flow inserts in
flow boiling (cf. e.g. [4], [5]).

Thus it can be seen that the upstream approach
must base on the dynamics of droplets, as well in flow
with vapour core as in the encounter with the wall. The
knowledge of the average diameter D of droplets is of
particular importance.

2. CRITICAL HEAT FLUX

Suppose a droplet of saturated liquid of diameter D
strikes a hot wall of temperature T, with a velocity w;
normal to the surface. This droplet flattens to form a
round disc of diameter a = &, D, and thus covers the
area

A=-at="gp.

2 y (2.1)

If such a layer of saturation temperature T is brought
to sudden contact with a hot wall of temperature T,
then on the boundary the temperature

T,~T yep \12
T,=T,+AT=T, + -~ * - K=<; C”) (2.2)
"wcwpw

1+k

is established instantaneously. In this formula 4, ¢, p
denote the heat conductivity, specific heat at constant
pressure, and density; subscript w refers to the wall
material, and primes to the saturated liquid.

Thus T, is the maximum temperature of liquid, and
it is clear that the heat removed from the wall to the
droplet in a single encounter cannot exceed the value

Q = m'AT, AT =T,—T, (2.3)

where

T
my=—p D? (2.4)
6
is the mass.
Suppose now that the time between two subsequent
encounters on the same site is t4; it consists of the time

of contact, t, and the time of flight, ¢,; thus
ty =t 4+t 2.5)

Denoting by I the path of flight with velocity w; we
have 1, = I/w;, and

®© O O () O ® O °
Lo @ © ®le OO pe
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Fic. 2. Idealised model of droplet pattern in the vicinity of the wall; flattened droplets in contact with the
wall shown thus O, impinging droplets thus ©. rejected droplets thus @ ; the direction of flow is from the
right to the left.
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l W,
ty=—|14+—) (2.6
w; l
The average heat flux on the site covered by the droplet
is given by

4= 27

2
Agty
or with use of equations (2.3) and (2.6) by

myc'ATw;

q; = ~ W\
Adl 1 + T

If only a portion of sites is occupied, as in the mist flow
(Figs. 2a, b) then the average heat flux due to the contact
of droplets with the wall is smaller in proportion. By
addition of the heat flux removed directly by vapour
convection the total average heat flux can be obtained.

Under the conditions of dry-out (see Fig. 2c) all the
sites are occupied ; therefore it must be

(2.8)

u=4q (29)
where q is the total average heat flux in dry-out
conditions, or the critical heat flux.

3. LEIDENFROST PHENOMENON

The dynamics of droplets in an encounter with the
wall will be studied with help of a model demonstrated
in Fig. 3. A droplet of diameter D approaches the wall
with a velocity w; normal to the surface (Fig. 3a).
During the contact with the wall the droplet first
flattens to form a round disc of diameter £,, D (Fig. 3b).
Itis assumed that the process of flattening is very rapid
and is not affected by vapour production at the
boundary. It is assumed furthermore that this vapour
production will take place immediately after the end of
the flattening process in which liquid assumes the
temperature T, = T, + AT.

With the start of evaporation the droplet behaves
like a rocket. In the initial phase of flight (Fig. 3c) the
droplet has still a flattened form, and afterwards the
surface tension forces re-establish the spherical shape
of the droplet (Fig. 3d). The droplet is rejected from
the wall with the velocity w,.

The first step in the analysis is the calculation of the
quantity &, = a/D. This has been done in the present
author’s report [6], concerning the solidification of
droplets on cold walls with the application to plasma
spraying and aircraft icing. The same theory applied
for the case when droplets do not solidify on the
surface leads to the following approximate formula

¢ 1 n Y
oy =g =
We Re,.<1.2941> e=1

which was also given in [6]. Table 1 contains the
results of accurate numerical calculations for the case
in function of the Reynolds and Weber numbers

Re; = w; D}V, (3.2)

3.1)

We = p'w{ D/o,
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Fi. 3. Model of the Leidenfrost phenomenon for a droplet in
flow normal to the hot wall.

N

where w; is the impact velocity (as in Fig. 3a), v’ the
kinematic viscosity of liquid, and ¢ the surface tension.
Upper figures in Table 1 denote £, middle figures
denote ¢ [which according to the approximate formula
(3.1) should be equal to unity], lower figures denote the
dimensionless time in which the dimension a of the disc
is assumed, namely ¢,, = 2w;t/D. According to preced-
ing assumptions this time ¢ is identical with the time of
contact t,, so that

t, = t,D/2w, (3.3)

It is seen that the approximate formula introduces
errors of a few percent. Furthermore from the numeri-
cal data contained in Table 1 it follows that

tyx L17E, (3.4)

with mean-square error of 5%,

Let us study now the droplet in the role of a rocket,
Fig. 3c. Its propulsion is due to evaporation, a process
which may be studied with help of the model of
evaporating superheated halfspace. Since the theory of
the latter is known one may use the results according
to which the mass evaporated in the moment ¢ is equal
to

Am=Ap' U J@t), a=3/cp, (3.5)

where the constant U fulfils the following transcedent
equation

U U U\ AT U
\/nEerfc?exp (3) = Zh— _f<3>’

where Ahis the enthalpy of vaporization. Values of the
function f(U/2) are given in Table 2.

During evaporation (Fig. 3c) vapour moves rel-
atively to the droplet with a velocity

pd , P U |a
= t]) = — - — —
wP p// dt (U \/[a ]) pu 2 \/ t >

(3.6)

(3.7)

and this causes the droplet to move perpendicularly
away from the wall with a velocity w,. Assuming

constant momentum we obtain
(my—Am)w, = Am (w,—w,), (3.8)

whence

Am 24, a'p?* [UV?
R R ) IEY)

so that the Reynolds number, analogous to that of
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equation (3.2), but for the rejected droplet, is equal to

24,0 p* [U\?
Reg = woD)v' = 4.7 [Z
€g Wo /V mdPr/ p// <2> s (310)

where

Pr=v/d (3.11)

is the Prandtl number of liquid.
By making use of equations (2.1) and (2.4) we obtain
also

P 7 \2 (3.12)

2 4 2

Re0 = E"’.i(g) .

It is thus seen that the velocity w, (or the Reynolds

number Re,) depends upon the superheat AT via U/2

and equation (3.6), and also upon Re; and We via &,
{equation (3.1)].

Now we will argue that in the Leidenfrost phenom-
enon it must be w; = w,, or Re; = Re,. Suppose first
that the process shown in Fig. 3 takes place on a
horizontal plate in the gravity field. In such a case if w,
< w; then at assumed small rates of evaporation the
droplet will land on the plate after several encounters;
if wy > w; it will escape. In the case of a vertical hot
surface, the inequality w, < w; leads finally to the
establishing of a liquid film. By this argument the
equation (3.12) represents a relationship between AT
(or U/2) and Re; = Re, and We for a given pressure.
Since the Weber number contains also the velocity it
is useful to express it by means of the Reynolds number
thus

we = R (3.13)

e=—"1, .
La

La = oD/p'v? (3.14)

is the Laplace number; its reciprocal is sometimes
called the stability number.

In Fig. 4 the graph AT vs. Re; is given for water at
7MPa. It is seen that each curve La = constant
exhibits a minimum, AT,,;, at a value of Re; = Re
equal to

Re = 3.0014 La®. (3.15)
The corresponding value U, equals
Umin ’ "\
o = 07452 (Pr %) La®s. (3.16)

Substituting (3.15)and (3.13)in (3.1) and solving for &,
we obtain for the above condition

&, = 1.3423 La'®8, (3.17)

Turning to the interpretation of the Fig. 4 we have at
AT > AT, two values of Re; = Reg, namely Re;* and
Re; < Re}. For all values of Re; < Re; and
Re; > Re;' there is Re, < Re;, a fact which has been
observed (cf. [7]), leading to the formation of the, film
atsmall rates of evaporation. For Re; < Re; < Ré™ it
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in the analyzed process the superheat AT attains its
minimum value at a given droplet diameter D (or
Laplace number La) and at a given pressure. Therefore
in making use of the formula (2.8) the quantities
(3.15-3.17) must be used. Thus utilizing equations
(2.9), (3.3), (3.4) and (3.9) at w, = w,, and quantities
(3.15-3.17) we obtain the following formula for the
critical heat flux

p'VAh La®®
. o 1,

La®®

g =111 (3.18)

140.79

v
g
where f = f(U_;./2), ie. it also depends upon the
Laplace number.

In this formula the length  of flight is not determined
as yet. In the case of a round tube of diameter d it is
natural to assume the proportionality ! « d so that the
ratio I/d should be independent of other working
conditions for a given tube diameter. This assumption
must be verified experimentally.

Using the ratio I/d the formula (3.18) may be
rewritten thus

L 3/8
%:1.11‘;' - 1 f.
Y 14079202 g0

(3.19)

od |

4. AVERAGE DROPLET DIAMETER

The results of the foregoing theory express the local
heat flux as a function of the local average droplet
diameter. They are valid therefore for an arbitrary
vertical channel with arbitrary cross-section under the

is on the other hand Re, > Re;, a condition nevef\qondition that the dimension / is suitably chosen. Note

observed experimentally. We thus may conclude that

that the working conditions as the mass velocity G and
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Tablei 2.777\V’alues of the funcft_iqﬂﬁf"AT/Ah =f(U/2) ig M ez 1—x
U/ 7 Un s un ¥ p" 18" xG’ p «x
0.1 0.1590 10 0.7579 1.9 0.8976 As to the droplet diameter one must have in view that
0.2 0.2868 1.1 0.7832 20 0.9054 . . )
03 0.3906 12 0.8050 21 09123 in developed mist flow, i.e. far from the place of dry-
04 0.4755 13 0.8240 22 09187 out, there must be a variety of droplet diameters of
0.5 0.5457 1.4 0.8405 23 0.9242 statistical nature. The reason for this statement is in
8?] 8222‘; }2 82222 %‘51 83%3? particular the evaporation of droplets in contact with
0.8 0.6936 17 0.8790 %6 09383 superheated vapour. At the dry-out position, however,
! 7128 ! 0.9422 the droplets are “fresh”, ie. they are created by

0.9 0.7283 1.8 0.8889 27

vapour quality x do not appear in the formula (3.19);
however, these quantities determine the average drop-
let diameter as it will be seen from the following
argument.

The liquid mass flow rate, i.e. the mass flow rate of
droplets in mist flow can be figuratively treated as a
vector the lateral component of which was utilized in
the analysis of the Leidenfrost phenomenon. In theo-
ries of drop—annular flow that lateral component is of
vital importance since it determines the mass fluxes of
entrainment and of deposition. In the presented theory
the value of the lateral mass flux is of no importance,
although its existence is the basis of the analysis.

In order to determine the average droplet diameter
the longitudinal component of liquid mass flow rate
will be utilized. One-dimensional slip flow is assumed
with w' as the velocity of droplets, and w” that of
vapour. In vertical upward flow and stationary con-
ditions the friction force, calculated from the Stokes
law, namely 3np” (" — w'), where i is the dynamic
viscosity of vapour, is balanced by the gravity force
gp'nD?/6. Hence in equilibrium

/Dg
w27 4.1)
18u
so that the slip ratio is given by
w’ 1
S=—= - 42
W gprDZ ( )
18#17 wH
In the general case of 1-D two-phase flow it is
A S
s=Ff. % =9 4.3)
Pt i=x o

where ¢ denotes the average void fraction, and
. xG

oo

Eliminating S and w” we obtain a quadratic equation

gp'D? P 1-x
(1 - (1 ~ 8G w) =

from which ¢ can be found, and the result inserted in
formula (4.4) to determine the vapour velocity as a
function of the following groups:

(4.4)

4.5)

entrainment due to disintegration of the film. In the
latter process the droplet diameters may be compara-
tively great, but if it is so they must disintegrate due to
their own instability. The greatest diameter of the
droplet is determined by the critical Weber number

(4.6)

Note that this Weber number is defined in a different
way to the one used previously, equation (3.2).

It is thus assumed that the significant (or average)
droplet diameter is given by equation (4.6). To cal-
culate it one must solve the set of equations (4.4), (4.5)
and (4.6). This is possible by various iteration schemes
applied to the equation

We,., = p"w"?Djg = 12.

p" 1—x
;w2 2 1 P
Py Web2 = - = " 4
v \/Z ez
xG
in which
o (VY La D
== (=) =— (4.8)
14 (72 Wec"'g agp Wecrl't

Thus, if the working parameters as pressure, mass
velocity G, and vapour quality x are given one can
compute the Laplace number La = ¢D/p'v’* from
equations (4.7 and 4.8). The latter substituted in
equation (3.19) gives the value of the critical heat flux.

5. EXPERIMENTAL VERIFICATION

Fortunately there are very rehable data for the
boiling crisis of water in vertical round tube of 8 mm
bore, produced by the USSR Academy of Sciences [8].
The mean-square error of the recommended figures is
10%.

Sample results of calculations for the lowest press-
ure in the tables [8], i.e. 2.95 MPa, are given in Table
3. For this pressure it is T, = 232.3°C, p' =
819.8 kg/m?, p” = 14.77 kg/m>, Pr' = 0.87,v' = 0.144 -
107 %m?%/s,¢ = 3.16 - 10~ 2 kg/s?, Ah = 1.8014 MJ/kg,
v’ = 1.187 - 10~ ¢ m?/s. Figure 5 shows the relationship
qd/p'v'Ah vs. Laplace number for all 74 data recom-
mended [8] at 2.95 MPa. In 45 cases, denoted in Fig. 5
by black points, the dry-out occurs in drop-annular
flow beyond doubt. The rest of data, shown by circles
in Fig. 5, was recognized as slug flow by the method
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Table 3. Sample results for water at 2.95 MPa flowing in tube of 8 mm bore with mass velocity 750 kg/m?s

ch ex: (1‘
No. N (MW/m?)  La-107° un 7 Jexp 0o/ Iy
p'v' Ah
1 0.05 795 8.866 1.217 0.808 299.1 1.05 0.2602
2 0.1 7.50 8.217 1.199 0.805 282.1 1.00 0.2939
3 0.15 7.10 6.126 1.134 0.791 267.1 099 0.3198
4 0.2 6.75 3907 1.043 0.769 2539 100 0.3168
5 0.25 645 2.616 0.967 0.748 2426 1.02 0.2999
6 0.3 6.15 1.867 0.908 0.731 2314 1.02 0.2833
7 0.35 5.80 1.394 0.859 0.714 218.2 1.01 0.2720
8 04 5.50 1.081 0.819 0.700 206.9 099 0.2612
9 045 5.25 0.833 0.780 0.686 197.5 0.98 0.2472
10 0.5 50 0.704 0.756 0.677 188.1 098 0.2429
300k POYR=T
2501 . ..—"‘,_...o’—l’
2001~ 295 MPau I y&'«cﬂ
150 »
100
80
=8
e 3004 o e -
- 4 a o »
250 009.,-'£ S
200+~ 00/0. ,."_./
150 et
oold
80
Py
| ! |
ai03 104 10% 108
La

FiG. 5. Upper data: water 2.95 MPa, 8 mm bore, a—theoretical curve, b, c—empirical curves equation (5.1).
Lower data: water, 49 MPa, 8 mm bore, a—theoretical curve, d—possible empirical correlation.
Drop-annular flow shown by black points, slug flow by circles.

[9]; these data were not taken into account in
correlations.

For every point the ratio //d was calculated by use of
equation {3.19); these ratios are given in Table 3. The
average was {{/d> = 0.2636 and this value was used to
draw the curves a in Fig. 5. The mean-square error in
the correlation of equation (3.19) (curve a) was then
11.9%, i.e. something greater than the 109, guaranteed
by the recommendation [8]. However, it was possible
to make a more accurate correlation for the pressure
2.95 MPa, namely

w_

J—.3 = 0.15 4

VAR 369 La for La > 8.10% 5.1)
94 0.38 "

vk = 275 La" for La < 8.10%

The mean-square error in the first formula (curve ¢ in
Fig. 5)is only 2.2%; {correlation coefficient 0.98), that in
the second relationship (curve b in Fig. 5) is 6.7%
(correlation coefficient 0.93).

The same procedure was applied to 75 data for 4.9
MPa [8], from which only 24 were recognized as
drop-annular flow. Curve a for 4.9 MPa represents
equation (3.19) with the same ratio l/d = 0.2636 as it
was taken for 2.95 MPa. Asitis seen from Fig. S alsoin
this case the agreement between theory and experi-
ment is tolerably good.

According to the tables [8] the critical heat flux is
approximately inversely proportional to the square
root of the tube diameter. From this theory it follows
that for smaller Laplace numbers, when the de-
nominator in equation (3.19) is close to unity, the
critical heat flux should be inversely proportional to
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2501
2001~

100

qd
pvhAh

210° 10*

10° 108

Fi6. 6. Upper data: water 6.9 MPa, 8 mm bore, a—theoretical curve; only two points {marked black } were
identified as drop-annular flow, other data represent slug flow {circles). Lower data: water 9.8 MPa, 8 mm
bore, a—theoretical curve; all the experimental points refer to slug flow.

the tube diameter. For greater Laplace numbers the
influence of the tube diameter is weaker. In Table 4 an
example of La = 8.10° at 2.95 MPa is given. Tt is seen
that the influence of diameter is similar to that in the
recommended formula [8].

6. CONCLUSIONS

The present theory is based on a number of simplify-
ing assumptions of which the more important will be
briefly discussed here. First of all, it is assumed that in
the case of dry-out all the surface is covered with
flattened droplets of maximum diameter. Secondly,
the time of contact of the droplet with the wall is
assumed to be identical with the time of flattening. It is
clear that such an assumption leaves much to be
desired. Thirdly, the velocity of the droplet in the
Leidenfrost phenomen is calculated without taking
into account the resistance of flow in vapour. The next
assumption refers to the heat absorption by the droplet
in contact with the wall. It is assumed that the droplet
is uniformly superheated to the temperature of contact

Table 4. Influence of the tube diameter on the critical heat
flux. Water, 2.95 MPa, La=8 x 10°

¢(MW/m?) ¢MW/m?)
from equation from the proportion
d {mm) (3.19) qcd 28]
4 10.9 113
8 8.0 8.0
16 52 56

T}, Sure enough this superheat is attained mainly from
the side of the wall, and this indeed causes the rocket
effect by the rejection of the droplet. The last simplifi-
cation to be criticised is the method of calculation of
the average droplet diameter. It has been assumed that
the flow is 1-DD and with slip. It is known that in mist
flow there are considerable differences between the
average and the maximum velocity of vapour.
Therefore using the critical Weber number the distri-
bution of droplet diameters connected with the vapour
velocity distribution might be found, and an average
value established. It is obvious that this problem is
connected with the question of average path of flight, /.
It must be added that the slip is more important for
greater droplets, or greater Laplace numbers; it would
be better therefore to use in such cases more accurate
formulae for the slip ratio.

Some of the above assumptions might be easily
improved, i.e. it was possible without much effort to
make the theory more complicated. Nevertheless, the
present theory in comparison with experimental data
gives correct results in these cases when the boiling
crisis takes place in actual drop-annular flow. How-
ever, at higher mass velocities and higher vapour
density to liquid density ratios such a flow regime is
less probable than the slug flow. Therefore all the
theoretical considerations with respect to the me-
chanism of the boiling crisis must begin with the
identification of the flow régime. In the present study
the method [9] has been utilized.

If in experiments the drop-annular flow has been
identified, then-—as it follows from the present
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report—a fairly accurate empirical correlation for a
given system pressure can be done using a relationship
qd/p'v'Ah vs. the Laplace number. Such a correlation in
case of slug flow is characterized by considerable
scattering of data (see Fig. 6).

The presented theory can be used, under the above
conditions, in establishing of the scaling law for the
modelling of the boiling crisis in drop-annular flow.
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UN NOUVEAU CRITERE D’ASSECHEMENT EN ECOULEMENT DIPHASIQUE

Résumé—Le critére d’asséchement est formulé comme une limite de I'écoulement en brouillard dans une

approche telle qu'a la place de I'asséchement, le flux massique des gouttelettes est si grand que celles-ci

couvrent occasionnellement toute la section de la paroi. A partir de cette hypothése on établit une théorie et

les résultats sont comparés avec les données expérimentales pour 'écoulement d’eau dans des tubes verticaux
a section circulaire.

EIN NEUES KRITERIUM FUR DAS AUSTROCKNEN IN DER ZWEIPHASENSTROMUNG

Zusammenfassung—Das Kriterium fiir das Austrocknen wird (gegen die Strémungsrichtung betrachtet) als

Grenze der Spritzerstromung formuliert: stromaufwirts vom Ort des Austrocknens wird der Massenstrom

der Tropfchen so groB, daB sie gelegentlich die ganze Wand bedecken. Auf dieser Annahme wird die Theorie

aufgebaut; dic Ergebnisse werden mit experimentelien Daten fiir Wasser bei senkrechter Rohrstrémung
verglichen.

HOBbIM KPUTEPHU KPHU3UCA KUIEHHSA B JBYX®A3HOM [IOTOKE

Annotaumst — KpuTepnii XpH3uca KANEHMS [T TEYCHUA NPH HANMYHH B3BEIICHHBIX YACTHU XUIKOCTH

OMPpENe/IfeTCs KaK Npefe/ibHas BEMIMYHHA, COOTBETCTBYIOMAR OONAcTH, FOe KaniH 3JafoNHAIOT BCe

cevenue kanana. Ha oCHOBE NPHHATOrO NOMYWIEHHS NpeinoXeHa Teopus npouecca. [aHo cpasHeHme

TEOPETHHECKHX PE3YJIbTATOB ¢ IKCTIEPMMEHTA/IbHBIMA JAaHHBIME [UTA TEYEHMS BOJABI B BEPTHKAbHBIX
KPYTJiBiX Tpy6ax.



